

ISSN: 2582-7219

International Journal of Multidisciplinary Research in Science, Engineering and Technology

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Impact Factor: 8.206

Volume 8, Issue 10, October 2025

ISSN: 2582-7219 | www.

| www.ijmrset.com | Impact Factor: 8.206 | ESTD Year: 2018 |

International Journal of Multidisciplinary Research in Science, Engineering and Technology (IJMRSET)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

AI-Driven Drowsiness Detection System

Mrs.A.AdaikKammai¹, Bhavana K², Anekka TS³, Kavya S⁴

Assistant Professor, Department of Computer Science and Business Systems, R.M.D. Engineering College, Tamil Nadu, India¹

Student, Department of Computer Science and Business Systems, R.M.D. Engineering College, Tamil Nadu, India² Student, Department of Computer Science and Business Systems, R.M.D. Engineering College, Tamil Nadu, India³ Student, Department of Computer Science and Business Systems, R.M.D. Engineering College, Tamil Nadu, India⁴

ABSTRACT: Driver drowsiness is a major cause of road accidents worldwide, leading to severe injuries and loss of life. This project proposes an AI-driven Drowsiness Detection System that monitors the driver's facial expressions, particularly eye movements and yawning patterns, in real time using computer vision and deep learning algorithms. By analyzing video frames captured from a camera, the system detects early signs of fatigue and issues alerts to the driver through visual or audio warnings. The integration of Artificial Intelligence (AI) with real-time monitoring aims to reduce accidents caused by human fatigue and enhance road safety.

KEYWORDS: Artificial Intelligence (AI), Drowsiness Detection, Computer Vision, Deep Learning, Facial Landmark Detection, Eye Aspect Ratio (EAR), Convolutional Neural Network (CNN), Real-Time Monitoring, Driver Safety, Alert System.

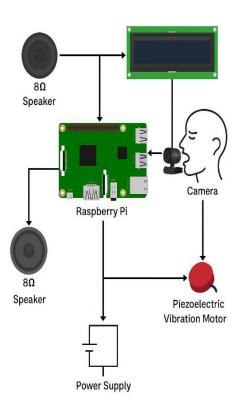
I. INTRODUCTION

Road accidents due to driver fatigue have become a critical issue in transportation safety. Studies indicate that drowsiness impairs alertness and reaction time, making drivers more prone to accidents. Traditional methods like lane monitoring or steering wheel sensors are often ineffective in accurately determining a driver's state. With advancements in AI and computer vision, it is now possible to track facial features, eye blinks, and head positions to detect drowsiness. The AI Driven Drowsiness Detection System uses image processing and machine learning models to continuously analyse a driver's facial behaviour. When signs of fatigue are detected, the system triggers immediate alerts, preventing possible mishaps and promoting safer driving environments. The AI Driven Drowsiness Detection System utilizes a camera to monitor the driver's facial expressions in real-time. The system analyses parameters such as eye closure rate, blink frequency, yawning detection, and head position to determine the level of drowsiness. By applying image processing and deep learning models, the system can effectively distinguish between normal behaviour and signs of fatigue. Once drowsiness is detected, an audio or visual alert is triggered to wake the driver and prevent potential accidents. This project demonstrates how modern AI technologies can be applied to enhance intelligent transportation systems (ITS). It emphasizes the integration of computer vision techniques, machine learning algorithms, and human behavioural analysis to ensure safe driving. The proposed system can be easily implemented using tools like OpenCV, Dlib, TensorFlow, or Mediapipe, making it suitable for real-world vehicle integration.

II. EXISTING SYSTEM

In the existing drowsiness detection systems, driver fatigue is primarily monitored using traditional and mechanical methods. Most current systems rely on **physical sensors**, such as steering wheel sensors, pressure sensors on the seat, or wearable devices that track heart rate or brain activity. These methods attempt to detect fatigue indirectly by monitoring physiological or behavioural changes. Another approach is the use of **lane departure warning systems**, which alert the driver only when the vehicle starts to drift out of its lane. Some systems also use basic camera monitoring to observe eye closure or facial movements, but these are often limited in accuracy and unable to differentiate between normal blinking and fatigue-induced eye closure. The major limitations of these existing solutions include high cost due to sensor installation, intrusive monitoring that can make drivers uncomfortable, and low efficiency in predicting drowsiness before it poses a danger. Many systems fail to provide **real-time detection** and

ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 8.206| ESTD Year: 2018|



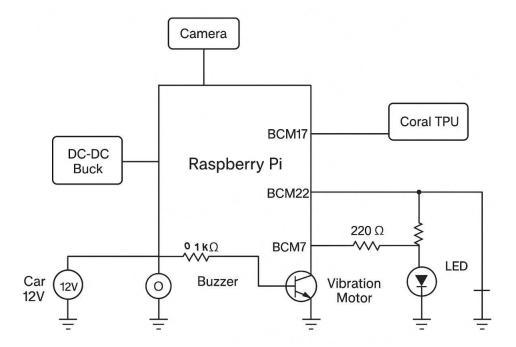
International Journal of Multidisciplinary Research in Science, Engineering and Technology (IJMRSET)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

early warning, reacting only after the driver shows signs of inattention or lane deviation, which reduces their effectiveness in preventing accidents. Overall, while these existing systems provide partial assistance in fatigue detection, they lack the intelligence, accuracy, and proactive measures required for **timely intervention and accident prevention**.

AI DRIVEN DROWSINESS DETECTION SYSTEM

III. PROPOSED SYSTEM


The proposed AI Driven Drowsiness Detection System aims to provide a real-time, intelligent, and non-intrusive solution for detecting driver fatigue. Unlike traditional methods, this system uses computer vision and deep learning techniques to monitor the driver's facial features, such as eyes, mouth, and head position, through a camera installed in the vehicle. The system calculates the Eye Aspect Ratio (EAR) to detect prolonged eye closure and monitors yawning patterns and head tilts to assess levels of drowsiness. By using a Convolutional Neural Network (CNN) or other machine learning models trained on large datasets of alert and drowsy faces, the system can accurately distinguish between normal behaviour and signs of fatigue. Once drowsiness is detected, the system immediately alerts the driver through audio alarms, visual warnings, or vibration alerts, enabling timely corrective action to prevent accidents. This approach is cost-effective, non-intrusive, and highly reliable compared to existing methods. Moreover, it can be integrated with embedded devices like Raspberry Pi or Arduino for real-world vehicle applications. The proposed system not only enhances road safety but also serves as a foundation for future advancements in intelligent transportation systems, providing a scalable solution for both personal and commercial vehicles.

ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 8.206| ESTD Year: 2018|

International Journal of Multidisciplinary Research in Science, Engineering and Technology (IJMRSET)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Circuit diagram

IV. FUTURE ENHANCEMENT

The AI Driven Drowsiness Detection System has great potential for further improvements to make it smarter, more accurate, and widely applicable. One enhancement is the integration of **infrared or thermal cameras**, which can reliably detect eye closure, yawning, and facial changes even in low-light or night-time driving conditions. Another improvement is the use of **IoT and cloud connectivity**, allowing multiple vehicles or drivers to be monitored in real time, which can be particularly useful for fleet management and public transportation. The system can also incorporate **voice alerts, vibration feedback, or even automatic vehicle control features**, such as reducing speed or alerting nearby traffic authorities, to prevent accidents in extreme cases of fatigue. Additionally, combining the system with **wearable sensors** like EEG or heart rate monitors can enhance accuracy by detecting physiological signs of drowsiness alongside facial cues. A **mobile or web application** can also be developed to log driver behavior, track fatigue patterns, and provide personalized safety recommendations. Future advancements may even include **integration with smart vehicles**, enabling semi-autonomous driving assistance when driver alertness is low. These enhancements will make the system more **intelligent, proactive, and adaptable**, contributing significantly to safer roads and better transportation management.

V. CONCLUSION

The AI Driven Drowsiness Detection System provides a **smart**, **real-time solution** to reduce accidents caused by driver fatigue. By continuously monitoring facial features such as eyes, mouth, and head position, the system can detect early signs of drowsiness and alert the driver immediately. Compared to traditional methods, it is **non-intrusive**, **cost-effective**, **and more accurate**, offering a practical way to improve road safety. This system can be used in personal vehicles, public transport, and commercial fleets, making it a versatile solution. With future enhancements like IoT integration, infrared monitoring, and mobile app support, the system has the potential to become an essential part of **intelligent transportation systems**, ensuring safer driving for everyone.

ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 8.206 | ESTD Year: 2018 |

International Journal of Multidisciplinary Research in Science, Engineering and Technology (IJMRSET)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

REFERENCES

- 1. P. Viola and M. Jones, "Rapid Object Detection using a Boosted Cascade of Simple Features," *IEEE CVPR*, 2001.
- 2. T. Soukupová and J. Čech, "Real-Time Eye Blink Detection using Facial Landmarks," *Computer Vision Winter Workshop (CVWW)*, 2016.
- 3. N. Dongre, A. Mahajan, "Driver Drowsiness Detection System using Computer Vision and Deep Learning," *International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)*, 2021.
- 4. OpenCV Documentation https://docs.opencv.org
- 5. Dlib Library Documentation http://dlib.net
- 6. Mediapipe by Google https://developers.google.com/mediapipe
- 7. S. Jain, R. Kumar, "Deep Learning Based Driver Drowsiness Detection Using CNN," International Journal of Computer Applications, 2020.
- 8. S. Albadawi, A. Al-Qaness, "Real-Time Driver Fatigue Detection Using Deep Learning and Eye State Analysis," Journal of Intelligent & Fuzzy Systems, 2022.
- 9. X. Zhang, Y. Li, "Multimodal Drowsiness Detection System Using Facial and EEG Data," IEEE Access, 2021.
- 10. A. Abtahi, M. Omidyeganeh, "Driver Drowsiness Monitoring Based on Eye Tracking and Head Movement," IEEE Transactions on Intelligent Transportation Systems, 2014.

INTERNATIONAL JOURNAL OF

MULTIDISCIPLINARY RESEARCH IN SCIENCE, ENGINEERING AND TECHNOLOGY

| Mobile No: +91-6381907438 | Whatsapp: +91-6381907438 | ijmrset@gmail.com |